If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+35x=0
a = 4.9; b = 35; c = 0;
Δ = b2-4ac
Δ = 352-4·4.9·0
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-35}{2*4.9}=\frac{-70}{9.8} =-7+1/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+35}{2*4.9}=\frac{0}{9.8} =0 $
| F(x)=40x2x^ | | 4x/x+3=6+2x | | 2e+4=5e-7 | | 3-(.5)(4-s)=2+(0.25)(5+s) | | 3-2-0.5s=2+1.5+0.25s | | 1-0.5s=3.25+0.25s | | F(t)=-16+20t | | 16-2y=18-2y | | 7n^2=343 | | 6y-2=2/5 | | (2x-4)(3x-8)=0 | | 615^2+473.71^2=c^2 | | 72^2+320^2=c^2 | | 72^2+320^3=c^2 | | 210^2+176^2=c^2 | | 229.84^2+461.37^2=c^2 | | 374^2+168^2=c^2 | | 90^2+216^2=c^2 | | 190^2+336^2=c^2 | | 80^2+192^2=c^2 | | 192^2+256^2=c^2 | | 84^2+80^2=c^2 | | 91^2+60^2=c^2 | | 180=80+(4x-32) | | 1/3x=6/8 | | 29-3m=20 | | -x^2=-12 | | H=4f=12 | | (434.031/x)-1=-0.09 | | 2(5)^2x+3=12 | | 200x=5x | | .46x=20x |